Geometric dual formulation for first-derivative-based univariate cubic L 1 splines
نویسندگان
چکیده
منابع مشابه
Geometric dual formulation for first-derivative-based univariate cubic L 1 splines
With the objective of generating “shape-preserving” smooth interpolating curves that represent data with abrupt changes in magnitude and/or knot spacing, we study a class of first-derivative-based C1-smooth univariate cubic L1 splines. An L1 spline minimizes the L1 norm of the difference between the first-order derivative of the spline and the local divided difference of the data. Calculating t...
متن کاملGeometric Hermite interpolation by cubic G1 splines
In this paper, geometric Hermite interpolation by planar cubic G1 splines is studied. Three data points and three tangent directions are interpolated per each polynomial segment. Sufficient conditions for the existence of such G1 spline are determined that cover most of the cases encountered in practical applications. The existence requirements are based only upon geometric properties of data a...
متن کاملGeometric Interpolation by Planar Cubic G1 Splines
In this paper, geometric interpolation by G cubic spline is studied. A wide class of sufficient conditions that admit a G cubic spline interpolant is determined. In particular, convex data as well as data with inflection points are included. The existence requirements are based upon geometric properties of data entirely, and can be easily verified in advance. The algorithm that carries out the ...
متن کاملUnivariate Cubic L1 Interpolating Splines: Spline Functional, Window Size and Analysis-based Algorithm
We compare univariateL1 interpolating splines calculated on 5-point windows, on 7-point windows and on global data sets using four different spline functionals, namely, ones based on the second derivative, the first derivative, the function value and the antiderivative. Computational results indicate that second-derivative-based 5-point-window L1 splines preserve shape as well as or better than...
متن کاملUnivariate Cubic L1 Interpolating Splines: Analytical Results for Linearity, Convexity and Oscillation on 5-PointWindows
We analytically investigate univariate C continuous cubic L1 interpolating splines calculated by minimizing an L1 spline functional based on the second derivative on 5-point windows. Specifically, we link geometric properties of the data points in the windows with linearity, convexity and oscillation properties of the resulting L1 spline. These analytical results provide the basis for a computa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Global Optimization
سال: 2007
ISSN: 0925-5001,1573-2916
DOI: 10.1007/s10898-006-9124-y